a2zpapers.com

Exam. Code : 103205 Subject Code : 9261

B.A./B.Sc. 5th Semester (Old Sylb. 2016) MATHEMATICS (Vector Calculus and Solid Geometry)

Paper-I

Time Allowed—3 Hours] [Maximum Marks—50

Note :- Attempt any FIVE questions in all, choosing at least TWO from each section.

SECTION-A

- Define limit and continuity of a vector function. Derive I. (a) the derivative of vector function $\vec{r} = f(t)$ in terms of limit.
 - If $\vec{r} \times d\vec{r} = 0$, show that \vec{r} is a constant. (b) 5.5
- (a) Define curl of a vector point function and discuss its II. physical interpretation.
 - (b) Find the directional derivative of $f(x, y, z) = x^2y^3z^2$ at the point (1, 2, -1) in the direction of tangent to the curve $x = e^t$, $y = 2 \sin t + 1$, $z = t - \cos t$ at t = 0.

(c) Prove that $\nabla \log |\vec{r}| = \frac{\vec{r}}{r^2}$. 4.4.2

326(2117)/BSS-31378

1

(Contd.)

www.a2zpapers.com www.a2zpapers.com bad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

- III. (a) Prove that rⁿr is irrotational. Find n when it is solenoidal.
 - (b) Find grad r^m, where r is the distance of any point from the origin.
 5,5
- IV. (a) State and prove Green's theorem in a plane.
 - (b) Prove that div curl $\vec{f} = 0$, where \vec{f} in any continuously differentiable vector point function. 7,3

V. (a) Find the circulation of \vec{F} round the curve C, where $\vec{F} = (2x + y^2)\vec{i} + (3y - 4x)\vec{j}$ and C is the curve $y = x^2$ from (0, 0) to (1, 1) and the curve $y^2 = x$ from (1, 1) to (0, 0).

(b) State Stoke's theorem. 8,2

SECTION-B

- VI. (a) Trace the locus of $\frac{x^2}{a^2} \frac{y^2}{b^2} = \frac{2z}{c}$, where a, b, c are positive.
- (b) Obtain the equation of the surface of revolution obtained by rotating the curve $y^2 + 9z^2 = 36$, x = 0 about the z-axis. 7,3
 - VII. (a) Find the equation of the tangent plane at the point (x_1, y_1, z_1) of the central conicoid $ax^2 + by^2 + cz^2 = 1$.

326(2117)/BSS-31378

2

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

(b) A tangent plane to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

meets the co-ordinate axes in A, B, C. Prove that the centroid of the triangle ABC lies on :

$$\frac{a^2}{x^2} + \frac{b^2}{y^2} + \frac{c^2}{z^2} = 9.$$
 5,5

- VIII.(a) Prove that there are six points on an ellipsoid the normals at which pass through a given point (l, m, n).
 - (b) Show that the lines drawn from the origin parallel to the normals to the central conicoid $ax^2 + by^2 + cz^2 = 1$ at its points of intersection with the plane lx + my + nz = p generate the cone

$$p^{2}\left(\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\right)=\left(\frac{lx}{a}+\frac{my}{b}+\frac{nz}{c}\right)^{2}.$$
 4,6

- IX. (a) Find the equation of the enveloping cone from the point (x_1, y_1, z_1) to the paraboloid $ax^2 + by^2 = 2cz$.
 - (b) Find the equation of the surface on which the normals from the point (α, β, γ) to the elliptic paraboloid $x^2 + 2y^2 = 4z$ lies. 4,6
- X. (a) Show that if the origin is the centre of a conicoid, the coefficients of the first degree terms in its equation are all zero.
 - (b) Reduce the equation $11x^2 + 10y^2 + 6z^2 - 8yz + 4zx - 12xy + 72x - 72y + 36z + 150 = 0$

to the standard form and show that it represents an ellipsoid and find the equations of the axes. 3,7

326(2117)/BSS-31378

2000

www.a2zpapers.com www.a2zpapers.com

bad free old Question papers gndu, ptu hp board, punjab