Exam. Code : 103205 Subject Code : 9261

B.A./B.Sc. $5^{\text {th }}$ Semester (Old Sylb. 2016) MATHEMATICS
 (Vector Calculus and Solid Geometry)

Paper-I

Time Allowed-3 Hours]
[Maximum Marks-50
Note :-Attempt any FIVE questions in all, choosing at least TWO from each section.

SECTION-A

I. (a) Define limit and continuity of a vector function. Derive the derivative of vector function $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{f}}(\mathrm{t})$ in terms of limit.
(b) If $\overrightarrow{\mathrm{r}} \times \mathrm{d} \overrightarrow{\mathrm{r}}=0$, show that $\overrightarrow{\mathrm{r}}$ is a constant. 5,5
II. (a) Define curl of a vector point function and discuss its physical interpretation.
(b) Find the directional derivative of $f(x, y, z)=x^{2} y^{3} z^{2}$ at the point $(1,2,-1)$ in the direction of tangent to the curve $\mathrm{x}=\mathrm{e}^{\mathrm{t}}, \mathrm{y}=2 \sin \mathrm{t}+1, \mathrm{z}=\mathrm{t}-\cos \mathrm{t}$ at $\mathrm{t}=0$.
(c) Prove that $\nabla \log |\overrightarrow{\mathrm{r}}|=\frac{\overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}$. 4,4,2
III. (a) Prove that $r^{n} \vec{r}$ is irrotational. Find n when it is solenoidal.
(b) Find grad r^{m}, where r is the distance of any point from the origin.

5,5
IV. (a) State and prove Green's theorem in a plane.
(b) Prove that div curl $\overrightarrow{\mathrm{f}}=0$, where $\overrightarrow{\mathrm{f}}$ in any continuously differentiable vector point function.

$$
7,3
$$

V. (a) Find the circulation of $\overrightarrow{\mathrm{F}}$ round the curve C , where $\vec{F}=\left(2 x+y^{2}\right) \vec{i}+(3 y-4 x) \vec{j}$ and C is the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the curve $y^{2}=x$ from $(1,1)$ to $(0,0)$.
(b) State Stoke's theorem.

8,2
SECTION-B
VI. (a) Trace the locus of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{2 z}{c}$, where a, b, c are positive.
(b) Obtain the equation of the surface of revolution obtained by rotating the curve $y^{2}+9 z^{2}=36$, $\mathrm{x}=0$ about the z -axis. 7,3
VII. (a) Find the equation of the tangent plane at the point ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) of the central conicoid $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1$.

326(2117)/BSS-31378
(b) A tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meets the co-ordinate axes in A, B, C. Prove that the centroid of the triangle ABC lies on :

$$
\frac{\mathrm{a}^{2}}{\mathrm{x}^{2}}+\frac{\mathrm{b}^{2}}{\mathrm{y}^{2}}+\frac{\mathrm{c}^{2}}{\mathrm{z}^{2}}=9
$$

VIII.(a) Prove that there are six points on an ellipsoid the normals at which pass through a given point ($1, m, n$).
(b) Show that the lines drawn from the origin parallel to the normals to the central conicoid $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1$ at its points of intersection with the plane $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{p}$ generate the cone

$$
p^{2}\left(\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\right)=\left(\frac{l x}{a}+\frac{m y}{b}+\frac{n z}{c}\right)^{2}
$$

IX. (a) Find the equation of the enveloping cone from the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the paraboloid $\mathrm{ax}^{2}+\mathrm{by}^{2}=2 \mathrm{cz}$.
(b) Find the equation of the surface on which the normals from the point (α, β, γ) to the elliptic paraboloid $x^{2}+2 y^{2}=4 z$ lies.

4,6
X. (a) Show that if the origin is the centre of a conicoid, the coefficients of the first degree terms in its equation are all zero.
(b) Reduce the equation
$11 x^{2}+10 y^{2}+6 z^{2}-8 y z+4 z x-12 x y+72 x-72 y$
$+36 z+150=0$
to the standard form and show that it represents an ellipsoid and find the equations of the axes. 3,7
326(2117)/BSS-31378
3
2000

